Copied to
clipboard

G = D16⋊C22order 128 = 27

4th semidirect product of D16 and C22 acting via C22/C2=C2

p-group, metabelian, nilpotent (class 4), monomial

Aliases: D164C22, C8.15C24, C16.2C23, Q324C22, D8.4C23, C23.21D8, SD323C22, Q16.4C23, M5(2)⋊7C22, C4○D163C2, C4.77(C2×D8), (C2×C4).56D8, C8.58(C2×D4), C4(C16⋊C22), C16⋊C227C2, (C2×C16)⋊4C22, C4(Q32⋊C2), Q32⋊C27C2, (C2×C8).149D4, C4○D86C22, (C2×D8)⋊53C22, (C2×M5(2))⋊5C2, C22.26(C2×D8), C4.21(C22×D4), C2.30(C22×D8), (C2×C8).293C23, (C2×Q16)⋊57C22, (C22×C4).534D4, (C22×C8).296C22, (C2×C4○D8)⋊28C2, (C2×C4).660(C2×D4), SmallGroup(128,2146)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — D16⋊C22
C1C2C4C8C2×C8C22×C8C2×C4○D8 — D16⋊C22
C1C2C4C8 — D16⋊C22
C1C4C22×C4C22×C8 — D16⋊C22
C1C2C2C2C2C4C4C8 — D16⋊C22

Generators and relations for D16⋊C22
 G = < a,b,c,d | a16=b2=c2=d2=1, bab=a-1, cac=a9, ad=da, cbc=dbd=a8b, cd=dc >

Subgroups: 404 in 182 conjugacy classes, 90 normal (16 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C16, C2×C8, C2×C8, D8, D8, SD16, Q16, Q16, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C16, M5(2), D16, SD32, Q32, C22×C8, C2×D8, C2×SD16, C2×Q16, C4○D8, C4○D8, C2×C4○D4, C2×M5(2), C4○D16, C16⋊C22, Q32⋊C2, C2×C4○D8, D16⋊C22
Quotients: C1, C2, C22, D4, C23, D8, C2×D4, C24, C2×D8, C22×D4, C22×D8, D16⋊C22

Smallest permutation representation of D16⋊C22
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)(17 32)(18 31)(19 30)(20 29)(21 28)(22 27)(23 26)(24 25)
(2 10)(4 12)(6 14)(8 16)(18 26)(20 28)(22 30)(24 32)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 17)(14 18)(15 19)(16 20)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,17)(14,18)(15,19)(16,20)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9)(17,32)(18,31)(19,30)(20,29)(21,28)(22,27)(23,26)(24,25), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,17)(14,18)(15,19)(16,20) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,32),(18,31),(19,30),(20,29),(21,28),(22,27),(23,26),(24,25)], [(2,10),(4,12),(6,14),(8,16),(18,26),(20,28),(22,30),(24,32)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,17),(14,18),(15,19),(16,20)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F16A···16H
order12222222244444444488888816···16
size1122288881122288882222444···4

32 irreducible representations

dim11111122224
type++++++++++
imageC1C2C2C2C2C2D4D4D8D8D16⋊C22
kernelD16⋊C22C2×M5(2)C4○D16C16⋊C22Q32⋊C2C2×C4○D8C2×C8C22×C4C2×C4C23C1
# reps11444231624

Matrix representation of D16⋊C22 in GL4(𝔽17) generated by

0004
0040
12500
5500
,
0040
0004
13000
01300
,
1000
0100
00160
00016
,
0400
13000
00013
0040
G:=sub<GL(4,GF(17))| [0,0,12,5,0,0,5,5,0,4,0,0,4,0,0,0],[0,0,13,0,0,0,0,13,4,0,0,0,0,4,0,0],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[0,13,0,0,4,0,0,0,0,0,0,4,0,0,13,0] >;

D16⋊C22 in GAP, Magma, Sage, TeX

D_{16}\rtimes C_2^2
% in TeX

G:=Group("D16:C2^2");
// GroupNames label

G:=SmallGroup(128,2146);
// by ID

G=gap.SmallGroup(128,2146);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,-2,-2,253,1430,248,1684,851,242,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c,d|a^16=b^2=c^2=d^2=1,b*a*b=a^-1,c*a*c=a^9,a*d=d*a,c*b*c=d*b*d=a^8*b,c*d=d*c>;
// generators/relations

׿
×
𝔽